
Public

SMART CONTRACT AUDIT REPORT

for

Ebisu Vault

Prepared By: Xiaomi Huang

PeckShield
February 11, 2024

1/16 PeckShield Audit Report #: 2024-057

contact@peckshield.com

Public

Document Properties

Client Ebisu
Title Smart Contract Audit Report
Target Ebisu Vault
Version 1.0
Author Xuxian Jiang
Auditors Jason Shen, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 February 11, 2024 Xuxian Jiang Final Release
1.0-rc February 1, 2024 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/16 PeckShield Audit Report #: 2024-057

Public

Contents

1 Introduction 4
1.1 About Ebisu . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Suggested Underflow Avoidance in Vault::maxDeposit() 11
3.2 Possible Costly Shares From Improper Initialization 12
3.3 Trust Issue of Admin Keys . 14

4 Conclusion 15

References 16

3/16 PeckShield Audit Report #: 2024-057

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Ebisu vault, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts is well-documented and well-engineered,
and it can benefit from addressing the reported issues. This document outlines our audit results.

1.1 About Ebisu

Ebisu is designed to be an ERC4626-compliant vault that allows users to deposit and redeem assets
at any time. Specifically, it implements a points deposit vault for wrapped eETH (Etherfi ETH). The
points are calculated off-chain based on duration staked and make rewards potentially at a future
date. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of Ebisu Vault

Item Description
Issuer Ebisu
Type Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report February 11, 2024

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/ebisufinance/ebisu-vault.git (55ed087)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/ebisufinance/ebisu-vault.git (be59d61)

4/16 PeckShield Audit Report #: 2024-057

Public

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/16 PeckShield Audit Report #: 2024-057

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

DeltaPrimeLabs DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/16 PeckShield Audit Report #: 2024-057

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/16 PeckShield Audit Report #: 2024-057

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/16 PeckShield Audit Report #: 2024-057

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Ebisu vault. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 2

Informational 0

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/16 PeckShield Audit Report #: 2024-057

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability and 2 low-severity vulnerabilities.

Table 2.1: Key Ebisu Vault Audit Findings

ID Severity Title Category Status
PVE-001 Medium Suggested Underflow Avoidance in

Vault::maxDeposit()
Business Logic Resolved

PVE-002 Low Possible Costly Shares From Improper Ini-
tialization

Time & States Resolved

PVE-003 Low Trust Issue of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/16 PeckShield Audit Report #: 2024-057

Public

3 | Detailed Results

3.1 Suggested Underflow Avoidance in Vault::maxDeposit()

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Vault

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The Ebisu protocol is no exception. Specifically, if we examine the VaultCap contract,
it has defined a number of token-wide risk parameters, such as maxPerDeposit and maxTotalDeposits.
In the following, we show the corresponding routines that allow for their changes.

32 f unc t i on se tTVLL imi t s (uint256 _newMaxPerDeposit , uint256 _newMaxTotalDeposits)
ex te rna l on l yCapRa i s e r () {

33 r equ i r e (_newMaxPerDeposit<=_newMaxTotalDeposits , "newMaxPerDeposit exceeds
newMaxTotalDeposits") ;

34
35 emit MaxPerDepositUpdated (maxPerDeposit , _newMaxPerDeposit) ;
36 emit MaxTota lDepos i t sUpdated (maxTota lDepos i t s , _newMaxTotalDeposits) ;
37
38 maxPerDepos i t = _newMaxPerDeposit ;
39 maxTota lDepos i t s = _newMaxTotalDeposits ;
40 }

Listing 3.1: VaultCap::setTVLLimits()

These parameters define various aspects of the protocol operation and maintenance and need to
exercise extra care when configuring or updating them. Our analysis shows the update logic on these
parameters can be improved by applying more rigorous sanity checks. Based on the current implemen-
tation, certain corner cases may lead to an undesirable consequence. Specifically, the setTVLLimits()

setter can be improved to further validate the given maxTotalDeposits falls in a reasonable range. For

11/16 PeckShield Audit Report #: 2024-057

Public

example, it needs to be larger than _assetBalance(). Otherwise, no vault users are able to stake their
funds.

Recommendation Validate any changes regarding these system-wide parameters to ensure
they fall in an appropriate range.

Status The issue has been fixed by this commit: be59d61.

3.2 Possible Costly Shares From Improper Initialization

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Vault

• Category: Time and State [5]

• CWE subcategory: CWE-362 [3]

Description

The Ebisu protocol acts as an ERC4626 vault that accepts user deposit and mints pool share in
return. While examining the share calculation with the given deposit, we notice an issue that may
unnecessarily make the pool share extremely expensive and bring hurdles (or even causes loss) for
later depositors.

To elaborate, we show below the deposit() routine, which is used for participating users to deposit
the supported assets and get respective pool shares in return. The issue occurs when the pool is
being initialized under the assumption that the current pool is empty.

127 function deposit(uint256 assets , address receiver) public virtual override returns (
uint256) {

128 // require(assets <= maxDeposit(receiver), "ERC4626: deposit more than max");
129 _beforeDeposit(assets);

131 uint256 shares = previewDeposit(assets);
132 _deposit(_msgSender (), receiver , assets , shares);

134 return shares;
135 }

137 function previewDeposit(uint256 assets) public view virtual override returns (
uint256) {

138 return _convertToShares(assets , Math.Rounding.Down);
139 }

141 function _convertToShares(uint256 assets , Math.Rounding rounding) internal view
virtual returns (uint256) {

142 return assets.mulDiv(totalSupply () + 10 ** _decimalsOffset (), totalAssets () + 1,
rounding);

12/16 PeckShield Audit Report #: 2024-057

https://github.com/ebisufinance/ebisu-vault/commit/be59d61

Public

143 }

Listing 3.2: Vault::deposit()

69 function totalAssets () public view virtual override returns (uint256) {
70 return _asset.balanceOf(address(this));
71 }

Listing 3.3: Vault::totalAssets()

Specifically, when the pool is being initialized, the share value directly takes the amount of assets
(calculated from _convertToShares()), which is manipulatable by the malicious actor. As this is the
first deposit, the current total supply equals the calculated shares = previewDeposit(assets)= assets

= 1 WEI. With that, the actor can further deposit a huge amount of the underlying assets with the
goal of making the pool share extremely expensive.

An extremely expensive pool share can be very inconvenient to use as a small number of 1 Wei

may denote a large value. Furthermore, it can lead to precision issue in truncating the computed pool
tokens for deposited assets. If truncated to be zero, the deposited assets are essentially considered
dust and kept by the pool without returning any pool tokens.

This is a known issue that has been mitigated in popular Uniswap. When providing the initial
liquidity to the contract (i.e. when totalSupply is 0), the liquidity provider must sacrifice 1000 LP
tokens (by sending them to address(0)). By doing so, we can ensure the granularity of the LP tokens
is always at least 1000 and the malicious actor is not the sole holder. This approach may bring an
additional cost for the initial liquidity provider, but this cost is expected to be low and acceptable.

Recommendation Revise current deposit logic to defensively calculate the share amount when
the pool is being initialized. An alternative solution is to ensure a guarded launch process that
safeguards the first deposit to avoid being manipulated.

Status The issue has been resolved as the team plans to follow a guarded launch so that a
trusted user will be the first to deposit.

13/16 PeckShield Audit Report #: 2024-057

Public

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Vault

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the Ebisu vault, there is a special administrative account, i.e., capRaiser. This capRaiser account
plays a critical role in governing and regulating the vault-wide operations (e.g., set the parameters).
Our analysis shows that the privileged account needs to be scrutinized. In the following, we examine
the administrative account and its related privileged accesses in current contracts.

32 function setTVLLimits(uint256 _newMaxPerDeposit , uint256 _newMaxTotalDeposits)
external onlyCapRaiser () {

33 require(_newMaxPerDeposit <= _newMaxTotalDeposits , "newMaxPerDeposit exceeds
newMaxTotalDeposits");

35 emit MaxPerDepositUpdated(maxPerDeposit , _newMaxPerDeposit);
36 emit MaxTotalDepositsUpdated(maxTotalDeposits , _newMaxTotalDeposits);

38 maxPerDeposit = _newMaxPerDeposit;
39 maxTotalDeposits = _newMaxTotalDeposits;
40 }

Listing 3.4: Example Privileged Operations in VaultCap

We understand the need of the privileged functions for contract maintenance, but it is worrisome
if the privileged account is a plain EOA account. Note that a multi-sig account could greatly alleviate
this concern, though it is still far from perfect. Specifically, a better approach is to eliminate the
administration key concern by transferring the role to a community-governed DAO.

Moreover, it should be noted that current contracts are to be deployed behind a proxy. And
naturally, there is a need to properly manage the admin privileges as they are capable of upgrading
the entire protocol implementation.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been addressed as the team clarifies the use of a 2/3 multisig.

14/16 PeckShield Audit Report #: 2024-057

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Ebisu vault, which is designed to
be an ERC4626-compliant vault that allows users to deposit and redeem assets at any time. Specifically,
it implements a points deposit vault for wrapped eETH (Etherfi ETH). The points are calculated off-
chain based on duration staked and make rewards potentially at a future date. The current code base
is well structured and neatly organized. Those identified issues are promptly confirmed and fixed

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

15/16 PeckShield Audit Report #: 2024-057

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

16/16 PeckShield Audit Report #: 2024-057

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Ebisu
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Suggested Underflow Avoidance in Vault::maxDeposit()
	Possible Costly Shares From Improper Initialization
	Trust Issue of Admin Keys

	Conclusion
	References

